
J Math Chem (2010) 47:959–983
DOI 10.1007/s10910-009-9618-1

ORIGINAL PAPER

Extrapolation and interpolation of asymptotic series
by self-similar approximants

V. I. Yukalov · E. P. Yukalova · S. Gluzman

Received: 19 June 2009 / Accepted: 16 October 2009 / Published online: 29 October 2009
© Springer Science+Business Media, LLC 2009

Abstract The problem of extrapolation and interpolation of asymptotic series is
considered. Several new variants of improving the accuracy of the self-similar ap-
proximants are suggested. The methods are illustrated by examples typical of chem-
ical physics, when one is interested in finding the equation of state for a strongly
interacting system. A special attention is payed to the study of the basic properties of
fluctuating fluid membranes. It is shown that these properties can be well described by
means of the method of self-similar approximants. For this purpose, the method has
been generalized in order to give accurate predictions at infinity for a function, whose
behavior is known only at the region of its variable close to zero. The obtained results
for fluctuating fluid membranes are in good agreement with the known numerical data.
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1 Introduction

Asymptotic series are ubiquitous, arising in practically all realistic problems that do
not allow for exact solutions but require the use of some kind of perturbation theory.
The latter assumes that there exists a small parameter, such that the observable quan-
tities of interest can be represented as series in powers of this asymptotically small
parameter. However, in applications, this parameter is not negligibly small, but takes
finite values. In the majority of cases, the perturbative series are divergent for the
parameter finite values, corresponding to realistic systems. This is why the problem of
extrapolating asymptotic series is of great importance. The problem poses the ques-
tion what are the most accurate ways of extending the validity of the series, obtained
for asymptotically small parameters, to the finite values of the latter. Moreover, in
some cases it is necessary to extend perturbative results to the extreme limit, where
the parameter tends to infinity.

The most popular techniques of extrapolating asymptotic series are based on the
Padé approximants [1]. However, these have several well known shortcomings. First
of all, they are not uniquely defined. For a series of a given order, there is a whole table
of many Padé approximants, but there is no general recipe that would advise which
of them should be preferred. The conclusion could be made if all these approximants
from the table would be close to each other. Then their dispersion would define their
accuracy. This, unfortunately, is a very rare case, since a rather standard situation is
when the results of the approximants from the table are widely scattered, making it
difficult to judge on their accuracy. Even worse, among the approximants from the
table, there very often appear those that contain unreasonable poles. Then the accu-
racy of such approximants, strictly speaking, is not defined at all. One can, of course,
neglect the approximants with the poles, calling them outliers. But, as is clear, this
is a quite subjective procedure, since it may happen that the arising poles could have
meaning, as is the usual case for critical phenomena. Arbitrarily rejecting some of the
approximants, while keeping others, renders the whole procedure not well defined.
Then one is not able to ascribe any accuracy to the obtained results. The most difficult
situation is when one needs to extrapolate the perturbative series to the infinite value
of the expansion parameter. In such a case, the Padé approximants cannot be used at
all. In order to be specific, showing that this necessity of extrapolating the parameter
to infinity does happen in realistic cases, we can mention the problem of calculating
the pressure of fluctuating fluid membranes.

Different types of membranes are rather frequent structures in chemical and bio-
logical systems [2–6]. The membrane thermal fluctuations between two hard walls
are often described by field theory. An important class of membranes are fluid mem-
branes, whose constituent molecules are able to move within them. The fluctuations
are controlled by their bending rigidity.

When applying field theory to the description of membranes, one encounters the
following problem. First, to proceed in calculations, one replaces the hard walls by a
smooth potential of a finite stiffness, which, in dimensionless units, can be denoted
as g. Then, one is able to proceed by invoking perturbation theory in powers of g.
However, to return back to the sought case of rigid walls, one needs to set g → ∞.
Thus, the problem arises how from an expansion in powers of small g → 0 one
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could extract information on the quantities of interest for large g → ∞? The standard
resummation techniques, such as Borel or Padé [6] could help in extending asymptotic
series in small g → 0 to finite values of g, but these techniques are not applicable for
the limit of g → ∞.

The problem of extending a function f (g), which is known only for asymptotically
small g → 0, to the whole region of g, including the limit g → ∞, can be solved by
the optimized perturbation theory, advanced in Ref. [7]. This theory has been success-
fully applied to a variety of problems, as can be inferred from the review-type articles
[8,9] and references therein. The pivotal idea of the optimized perturbation theory [7]
is to introduce in the calculational process control functions defined by optimization
conditions. As a result, a function f (g), known only for small g → 0, can be extrap-
olated to the whole region of g, including the limit g → ∞. There exist three main
ways of introducing control functions. One way is to include in the initial approxima-
tion trial parameters that are transformed, by means of the optimization conditions,
into control functions at each step of perturbation theory. Another way is to introduce
control functions in the process of accomplishing a perturbative or iterative scheme,
for instance, by defining the cutoffs of integrals or introducing regularization masses,
which are then to be transformed into control functions. The third way is to derive, first,
an asymptotic series in powers of a small parameter or variable and then to reorganize
the derived series by means of a change of variables, with control functions included
in this variable transformation. Various examples of introducing control functions can
be found in literature [10–30] (see also the review articles [8,9]).

The optimized perturbation theory has been applied to fluid membranes in several
papers. The most accurate results have been obtained by Kastening [31], whose cal-
culations are based on the sixth-order perturbation theory, with introducing control
functions by means of the Kleinert change of variables [32]. This method requires
rather heavy numerical calculations. Also, the Kastening result [31] slightly deviates
from the Monte Carlo [33] simulations for this problem.

The aim of the present paper is to reconsider the general problem of extrapolating
asymptotic series in order to find an accurate and simple way of accomplishing such
an extrapolation. We also consider the case when the behavior at infinity is known,
which then becomes the problem of an accurate interpolation. We pay a special atten-
tion to developing simple methods for obtaining the limit f (∞) at g → ∞ from the
asymptotic expansion of f (g) at g → 0. To illustrate the methods, we apply them
to several problems, which yield the series, whose mathematical structure is typical
for many real situations in chemical physics. At the end, we apply these methods to
considering the problem of fluid fluctuating membranes.

The method we aim at developing is based on the self-similar approximation the-
ory [34–41] in the variant involving the self-similar root approximants [42–44] and
self-similar factor approximants [45–49]. This approach has been applied to variety of
problems, providing high accuracy and at the same time being quite simple [42–49]. It
was shown to be essentially more accurate than the use of Padé approximants [42–52].
However, in some cases, when the self-similar approximants were directly applied for
solving the problems involving the limit of g → ∞, the results were not satisfactory.
Our aim now is to generalize the method of self-similar approximants so that it would
provide good accuracy for the limiting value of f (∞) at g → ∞. Then we apply the
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method to solving several problems requiring the construction of the equations of state
for strongly interacting systems. Among them, we study the problem of fluctuating
fluid membranes and demonstrate that the newly developed methods provide good
accuracy by comparing our results with the known numerical calculations.

2 Factor and root approximants

First, we need to recall the method of self-similar factor and root approximants
[42–52], which we are going to improve. Suppose, we are interested in the behav-
ior of a real function f (g) of a real variable g. And let us assume that this function
is defined by so complicated equations that the sole thing we are able to find is the
property of the function at asymptotically small g, where

f (g) � fk(g) (g → 0) (1)

is approximated by the series

fk(g) = f0(g)

k∑

n=0

angn, (2)

in which f0(g) is a form that cannot be expanded in powers of g. Without the loss of
generality, we can set a0 = 1, since any a0 not equal to one can be incorporated into
f0(g).

Series (2), which are valid for g → 0, can be extrapolated to the region g > 0 by
means of the self-similar factor approximants [45–49] having the form

f ∗
k (g) = f0(g)

Nk∏

i=1

(1 + Ai g)ni , (3)

where

Nk =
{

k/2, k = 2, 4, . . .

(k + 1)/2, k = 3, 5, . . .
(4)

The parameters Ai and ni are defined by the re-expansion procedure, when the k-th
order approximant (3) is expanded in powers of g up to the k-th order as

f ∗
k (g) � f0(g)

k∑

n=0

a∗
n gn, (5)

where a∗
n = a∗

n({Ai }, {ni }). Then expansions (2) and (5) are compared, with equating
the same-order terms

a∗
n({Ai }, {ni }) = an . (6)
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This way is also called the accuracy-through-order procedure.
In order to give an explicit representation of Eq. (6), it is convenient to equate the

logarithms

ln f ∗
k (g) � ln fk(g) (g → 0), (7)

which, taking into account form (3), yields

Nk∑

i=1

ni ln(1 + Ai g) � ln
k∑

m=0

am gm . (8)

Expanding here

ln(1 + Ai g) =
∞∑

m=1

(−1)m−1

m
(Ai g)m,

we come to the equations

Nk∑

i=1

ni An
i = Bn (n = 1, 2, . . . , k), (9)

in which

Bn = (−1)n−1

(n − 1)! lim
g→0

dn

dgn
ln

(
n∑

m=0

am gm

)
. (10)

The system of Eq. (9) contains k equations. When k is even, system (9) defines all k/2
parameters Ai and k/2 parameters ni . When k is odd, then there are k + 1 parameters,
(k + 1)/2 parameters Ai , and (k + 1)/2 parameters ni . Then the system (9) is com-
plemented by the condition A1 = 1 following from the scaling arguments [47,48].
Thus, the re-expansion procedure completely defines all parameters of the self-similar
approximant (3). It may happen, though it is a rather rare case, that Eq. (9), for some
order k, do not have solutions. Then one just needs to proceed to the higher orders of
the series. But it is important to stress that for each given order k the factor approx-
imants are uniquely defined. So, when Eq. (9) possess solutions, these solutions are
unique.

The described above method allows for the extrapolation of a series for a small
g → 0 to the finite values of g. In some cases, there can exist additional information
on the behavior of the function at asymptotically large g,

f (g) � f p(g) (g → ∞), (11)

123



964 J Math Chem (2010) 47:959–983

so that

f p(g) =
p∑

j=1

b j g
α j (α j > α j+1), (12)

with the powers α j in the descending order. In that case, we have the problem of
interpolation between small g → 0 and large g → ∞. Suppose that f0(g) at large g
behaves as

f0(g) � Agα (g → ∞). (13)

Then, in order that the factor approximant (3) would satisfy the limiting form (12), we
need to set

A
Nk∏

i=1

Ani
i = b1 α +

Nk∑

i=1

ni = α1. (14)

This type of the interpolating factor approximant, employing k terms from the small-
variable expansion and one limiting term from the large-variable behavior, will be
denoted as f ∗

k+1(g). In the following sections, we develop alternative methods of
interpolation, improving the accuracy of the factor approximants

The problem of interpolation can also be conveniently solved by involving the
self-similar root approximants [42–44], having the form

R∗
p(g) = f0(g)

(
. . .

(
(1 + A1g)n1 + A2g2

)n2 + · · · + Apg p
)n p

. (15)

The parameters Ai and ni are defined by the large-variable expansion (12). Again, it is
important to emphasize that this definition is unique [9]. If, instead, we try to define the
parameters of a k-order root approximant by the accuracy-through-order procedure,
expanding Eq. (15) in powers of g and equating the resulting expansion with Eq. (2),
then we confront the problem of nonuniqueness of solutions for the sought parameters
[50]. In the following sections, we shall suggest a way of solving this problem. It is
worth noting that the regions of small g and large g can be easily interchanged by the
change of the variable g to 1/g.

3 Problem of self-similar interpolation

One of the well known difficulties in dealing with asymptotic series occurs when the
number of their terms is small, which does not allow one to construct higher order ap-
proximants. In the present section, we suggest a way of overcoming this difficulty. The
method, we advance, reminds the learning algorithms used in statistical learning [53].
The idea is as follows. Suppose we have k terms ak of the small-variable expansion
and the limiting form of the large-variable behavior. Interpolating from the right to
left, that is, considering the variable 1/g, we construct the corresponding self-similar
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approximant, say, the root approximant R∗
k (g). Then we expand the latter in powers of

g up to the (k +1)-order, obtaining an additional term a∗
k+1. Using the new expansion,

we define the approximant R∗
k+1(g). Expanding this up to the (k + 2)-order, we find

the (k + 2)-order term a∗
k+2. Then, we construct the approximant R∗

k+2(g), and so on.
Thus, each approximant defines the higher-order term of the small-g expansion. Of
course, this procedure can work only when the sought function pertains to the class of
monotonic functions and the interpolation problem is considered. Below, we illustrate
the method by examples where one is interested in finding the equations of state.

3.1 Fröhlich optical polaron

Let us consider the problem of the optical polaron, being interested in finding its energy
e(g) as a function of the coupling parameter g. It is common to employ the dimen-
sionless notations for these quantities, which we use in what follows. The small-g
expansion and the large-g limit can be found in the review article [54]. For the small-g
expansion, one has

e(g) � a1g + a2g2 + a3g3 (g → 0), (16)

with the coefficients

a1 = −1, a2 = −1.591962 × 10−2, a3 = −0.806070 × 10−3,

While the large-g behavior is given by the Miyake limit

e(g) � Bg2 + O(1) (g → ∞), (17)

where B = −0.108513.
Following the procedure described above, we derive the coefficients

a∗
4 = −5.014168 × 10−5, a∗

5 = −3.312472 × 10−6.

Using these and interpolating from the right to left, with the variable 1/g2, we construct
the root approximant

R∗
4(g) = Bg2

((((
1 + A1

g2

)n1

+ A2

g4

)n2

+ A3

g6

)n3

+ A4

g8

)n4

, (18)

where

A1 = 64.163254, A2 = 7.001856 × 103,

A3 = 7.026125 × 105, A4 = 5.201706 × 107,

n1 = 3

2
, n2 = 5

4
, n3 = 7

6
, n4 = 1

8
,
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and the root approximant

R∗
5(g) = Bg2

(((((
1 + A1

g2

)n1

+ A2

g4

)n2

+ A3

g6

)n3

+ A4

g8

)n4

+ A5

g10

)n5

, (19)

with the coefficients

A1 = 68.38553, A2 = 7.742967 × 103, A3 = 8.213401 × 105,

A4 = 7.313112 × 107, A5 = 4.417553 × 109,

n1 = 3

2
, n2 = 5

4
, n3 = 7

6
, n4 = 9

8
, n5 = 1

10
.

The accuracy of these approximants can be checked by comparing them with the
results of the Monte Carlo simulations [54] accomplished for the region of g ∈ [1, 15].
In all this region, the approximant (19) has the percentage error less than 1%. The max-
imal error of −1% occurs at g = 10, where this error is comparable with the Feynman
variational calculations [55]. But for all other values of g in the considered inter-
val, the accuracy of approximant (19) is better than the Feynman results. Comparing
the accuracy of the approximants R∗

3(g), R∗
4(g), and R∗

5(g), we observe numerical
convergence. For instance, the maximal percentage error of R∗

3(g) is 1.5% at g = 10.

3.2 One-dimensional Bose gas

Let us now consider the ground-state energy e(g) of the Lieb-Liniger model [56] as
a function of the coupling parameter g, again using dimensionless units. The weak-
coupling expansion can be written [57,58] as

e(g) � g + a3g3/2 + a4g2 + a5g5/2, (20)

with the coefficients

a3 = −0.424413, a4 = 0.065352, a5 = −0.017201.

For strong coupling, we have the Tonks-Girardeau limit

e(g) � π2

3
+ O

(
1

g

)
(g → ∞). (21)

Following the procedure, described at the beginning of this section, we find

a∗
6 = 5.153629 × 10−3.

Then we construct the root approximants of different orders, interpolating from the
right to left, with the variable 1/g, and compare their accuracy with numerical data
[58]. The approximant R∗

5(g) has the maximal, with respect to the whole range of
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g ∈ [0,∞), error of 3.4% at g = 6. The maximal error of R∗
6(g) is 1.75% at g = 10.

The best approximant is obtained using the coefficients a3 and a4 of expansion (20)
and the three terms of the strong coupling limit that can be written [57,58] as

e(g) � π2

3

(
1 − 4

g
+ 12

g2

)
(g → ∞) . (22)

The corresponding root approximant is

R∗
4+3(g) = π2

3

(((((
1 + A1

g

)n1

+ A2

g2

)n2

+ A3

g3

)n3

+ A4

g4

)n4

+ A5

g5

)n5

, (23)

where

A1 = 8.126984, A2 = 37.345427, A3 = 164.914098,

A4 = 388.171278, A5 = 385.382911,

n1 = 3

2
, n2 = 5

4
, n3 = 7

6
, n4 = 9

8
, n5 = 1

5
.

This aproximant (23) provides a very high accuracy in the whole range of g ∈ [0,∞),
having the maximal error of only 0.023% at g = 6. Therefore, expression (23)
can be employed as an analytical representation for the ground-state energy of the
Lieb-Liniger gas.

3.3 Diluted Fermi gas

Let us now turn to defining the ground-state energy of the spin 1/2 Fermi gas with
attractive interactions, corresponding to the negative scattering length as . The ground-
state energy e(g) can be written [59] as an asymptotic expansion in powers of the
dimensionless parameter g = |kF as |, where kF is the Fermi wave vector,

e(g) � a0 + a1g + a2g2 + a3g3 + a4g4 . (24)

Here g → 0 and

a0 = 3

10
, a1 = − 1

3π
, a2 = 0.055661,

a3 = −0.00914, a4 = −0.018604.

In the unitary limit [60,61], when g → ∞, numerical calculations [62] yield

lim
g→∞ e(g) = 0.132 . (25)

We construct the self-similar approximants of different orders and compare their
accuracy with Monte Carlo simulations [63].The factor approximant f ∗

3+1(g) turns
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out to be analogous to the diagonal [2/2] Padé approximant [64]. However, the root
approximant R∗

3(g) is essentially more accurate. The factor approximant f ∗
4+1(g) dis-

plays the same accuracy as R∗
3(g). The maximal percentage error of the latter two

approximants in the interval of g ∈ [0, 5] is only about 0.2%.

4 Problem of self-similar extrapolation

The problem of extrapolation of asymptotic series is much more difficult than that
of their interpolation. In the latter case, the large-variable limit is given, while in the
former case, this limit is not known. And often, it is exactly the limiting behavior at
large variable, which is of the most interest. In the present section, we suggest new
variants of constructing the self-similar approximants in the extrapolation problem
and illustrate these methods by the model whose mathematical structure is typical of
the variety of physical and chemical systems.

4.1 Iterated root approximants

The extrapolation of asymptotic series can be done by means of the self-similar factor
approximants. But, as is mentioned in Sect. 2, if we try to accomplish the extrapo-
lation by using the root approximants, we encounter the problem of nonuniqueness
of defining their parameters by the accuracy-through-order procedure. To overcome
this problem, we suggest to use the iteration method, by keeping the fixed lower-order
parameters when constructing the higher-order approximants. Then all parameters of
the root approximants can be uniquely defined.

To be concrete, let us consider the anharmonic-oscillator model with the Hamilto-
nian

H = − 1

2

d2

dx2 + 1

2
x2 + gx4, (26)

where x ∈ (−∞,∞) and the dimensionless coupling parameter is positive, being in
the region g ∈ [0,∞). The weak-coupling expansion for the ground-state energy [65]
reads as

e(g) � a0 + a1g + a2g2 + a3g3 + a4g4 + a5g5 + a6g6 + a7g7, (27)

with the coefficients

a0 = 1

2
, a1 = 3

4
, a2 = −2.625,

a3 = 20.8125, a4 = −241.2890625, a5 = 3580.98046875,

a6 = −63982.8134766, a7 = 1329733.72705.

Our aim is to extrapolate the weak-coupling expansion (27), valid for asymptoticaly
small g → 0, to the region of finite values of g. And we shall pay a special attention to

123



J Math Chem (2010) 47:959–983 969

the behavior of the extrapolated energy at large g → ∞, comparing it with the known
asymptotic form

e(g) � 0.667986g1/3 (g → ∞). (28)

The iteration method for constructing the uniquely defined root approximants is elu-
cidated in the following forms extrapolating the asymptotic expansion (27) to finite
values of g. We start with the lowest approximant

R∗
2(g) = 1

2
(1 + A1g)n1, (29)

in which

A1 = 8.5, n1 = 0.176 .

The next-order approximant is

R∗
4(g) = 1

2

(
(1 + A1g)n2 + A2g3

)n3
, (30)

with the same A1 and

A2 = 227.719, n2 = n1

n3
= 2.771, n3 = 0.064.

The next approximant

R∗
6(g) = 1

2

((
(1 + A1g)n2 + A2g3

)n4 + A3g5
)n5

, (31)

contains the same A1, n2, and A2, with

A3 = 3.827 × 104, n4 = n3

n5
= 2.001, n5 = 0.032.

We shall compare the strong-coupling behavior of these root approximants with the
exact limiting form (28) and with the factor approximant

f ∗
6 (g) = 1

2
(1 + B1g)m1(1 + B2g)m2(1 + B3g)m3, (32)

in which

B1 = 26.74018, B2 = 12.46882, B3 = 3.83804,

m1 = 1.80165 × 10−3, m2 = 0.05473, m3 = 0.20047.
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The strong-coupling behavior of the root approximants (29) to (31) is

R∗
2(g) � 1

2
(A1g)n1, R∗

4(g) � 1

2

(
A2g3

)n3
, R∗

6(g) � 1

2

(
A2g3

)n4n5
. (33)

While the factor approximant (32), as g → ∞, gives

f ∗
6 (g) � 1

2
Bm1

1 Bm2
2 Bm3

3 gm1+m2+m3 . (34)

Substituting here the corresponding values of the parameters yields

R∗
2(g) � 0.728698g0.176, R∗

4(g) � 0.707691g0.192,

R∗
6(g) � 0.707814g0.192, f ∗

6 (g) � 0.756157g0.257 . (35)

Comparing these expressions with the exact asymptotic form (28), we see that the
amplitudes of the root approximants provide slightly better extrapolation than the fac-
tor approximant, however, this difference is not essential, all amplitudes being defined
with an error of about 10%. In many cases, the most important quantity that is required
to be found from the extrapolation procedure is the power of g in the limit of g → ∞.
Equation (35) shows that the best extrapolation of the power is provided by the fac-
tor approximant, whose error is about 20%, while the root approximants have a twice
larger error. The accuracy can be improved by defining the higher-order approximants.

In the present section we demonstrated the application of the method of iterated
root appproximants to the problem of calculating the ground-state energy of the anhar-
monic oscillator. This method works well for other problems too. For example, we
have constructed the iterated root approximants for the problem of the one-dimen-
sional Bose gas of Sect. 3.2. The root approximant R∗

6(g), extrapolated from the left
to right, gives the energy e(∞), as t → ∞, equal to 3.292, which is very close to the
Tonks-Girardeau limit π2/3. We have also considered the iterated root approximants
for the problem of the diluted Fermi gas of Sect. 3.3. Extrapolating the ground-state
energy from small g → ∞ to the strong-coupling limit g → ∞ for R∗

4(g) provides
an accuracy within the maximal error of order 10%.

4.2 Odd factor approximants

In the definition of the factor approximants of odd orders, there is a necessity of pre-
scribing the value of one of the parameters, say A1, in the general form (3). According
to the scaling arguments [47,48], this parameter can be set to one. Here we suggest
one more variant of setting this parameter by defining it as a1/a0.

Keeping in mind the same problem of extrapolating the ground-state energy of the
anharmonic oscillator with Hamiltonian (26), we need to compare the accuracy of the
corresponding factor approximants. The standard form is

f ∗
5 (g) = 1

2
(1 + g)n1(1 + A2g)n2(1 + A3g)n3, (36)
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where

A2 = 21.86082, A3 = 8.48018,

n1 = 0.27622, n2 = 7.16531 × 10−3, n3 = 0.12584 .

In the strong-coupling limit, this gives

f ∗
5 (g) � 0.669g0.409 (g → ∞). (37)

Another variant of the factor approximant reads as

f ∗∗
5 (g) = 1

2

(
1 + a1

a0
g

)n1

(1 + A2g)n2(1 + A3g)n3, (38)

with the parameters

A2 = 22.16875, A3 = 8.83021,

n1 = 0.2212, n2 = 6.55016 × 10−3, n3 = 0.11585.

Now, the strong-coupling limit becomes

f ∗∗
5 (g) = 0.718g0.344 (g → ∞). (39)

As is seen, the first form (36) extrapolates better the amplitude, while the second
variant gives a better extrapolation of the power. Generally, there is no appriori pref-
erence for choosing this or that form, which, actually, is in agreement with the scaling
arguments [47,48].

4.3 Weighted factor-root approximants

One more possibility is to construct the weighted approximants defined as the linear
combination of the factor and root approximants of the form

W ∗
k (g) = λ f ∗

k (g) + (1 − λ)R∗
k (g), (40)

with all parameters determined from the accuracy-through-order matching. The accu-
racy of such weighted approximants can be essentially improved. A more general way
of constructing average values for an ensemble of approximants was considered in
Ref. [66]

5 Problem of extrapolation to infinity

The self-similar factor approximants (3) extrapolate the asymptotic series (2), valid
for small g → 0, to the region of finite g > 0. These approximants, as has been
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shown by numerous examples [45–49], provide for finite, even rather large, g very
good approximations, essentially more accurate than Padé approximants.

But the problem, we face now, is to extrapolate series (2) not simply to finite or
large g, but to find the limit f (∞) at g → ∞, of course, assuming that this limit
exists, so that

f (∞) = lim
g→∞ f (g) = const. (41)

By requiring that the limit

f ∗
k (∞) = lim

g→∞ f ∗
k (g) = const (42)

would also exist, in view of Eq. (3), we come to the condition

lim
g→∞ f0(g)

Nk∏

i=1

(Ai g)ni = const. (43)

Let, for concreteness, the behavior of f0(g) at large g be f0(g) � Agα(g → ∞), as
in Eq. (13). Then, for condition (43) to hold, it is necessary and sufficient that

α +
Nk∑

i=1

ni = 0. (44)

Therefore the value of approximant (3), given by

f ∗
k (∞) = A

Nk∏

i=1

Ani
i , (45)

provides the approximation for the sought limit f (∞).
This method of defining the limit f ∗

k (∞) at g → ∞ by imposing the restriction
(44) on the powers of the approximant (3) is very simple. However, as has been ana-
lyzed in Refs. [45,46], its accuracy is not high. In the following section, we suggest
another method, whose high accuracy will be illustrated by calculating the pressure
of fluctuating membranes.

6 Method of variable transformation

Instead of considering the limit f (∞) at g → ∞, it is convenient to make the change
of variables

g = g(z), z = z(g), (46)

123



J Math Chem (2010) 47:959–983 973

such that

lim
g→∞ z(g) = 1. (47)

Then, for the function

F(z) ≡ f (g(z)), (48)

the sought limit is given by

F(1) = f (∞) (49)

at z = 1.
With the change of variables (46), the series (2) become

fk(g(z)) ∼= Fk(z) (z → 0), (50)

where

Fk(z) = F0(z)
k∑

n=0

bnzn (51)

is an expansion in powers of z up to the k-th order, with the coefficients b0 = 1
and bn = bn(a1, a2, . . . , ak) defined through the coefficients an of series (2). Then,
constructing for sum (51) the factor approximant F∗

k (z), we obtain the approximation
F∗

k (1) for the sought limit f (∞).
In order to specify transformation (46), we assume the following natural properties.

According to condition (47), it should be that z → 1 as g → ∞. If the asymptotic
behavior of the sought function is

f (g) � f (∞)

(
1 + C1

gω

)
(g → ∞), (52)

we require that transform (48) be

F(z) � F(1)[1 + C2(1 − z)] (z → 1), (53)

where C1 and C2 are constants and ω > 0. And, in agreement with Eqs. (50) and (51),
we assume that z → 0 as g → 0, so that

g(z) � λz (z → 0), (54)

with a scaling parameter λ > 0.
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Comparing Eqs. (52) and (53) requires that

C1

gω
� C2(1 − z) (z → 1), (55)

where we take into account that f (∞) = F(1). This yields

g(z) � C3

(1 − z)1/ω
(z → 1), (56)

where C3 ≡ (C1/C2)
1/ω. The interpolation between limits (54) and (56) can be done

by using the self-similar factor approximants [45–50], which results in the form

g(z) = λz

(1 − z)1/ω
. (57)

Thus, we obtain an explicit expression for the change of variables (46). For simplicity,
we set in what follows the scaling parameter λ = 1.

But we need yet to define the exponent ω. For this purpose, we introduce the function

β(g) ≡ d ln f (g)

d ln g
= g

f (g)

d f (g)

dg
. (58)

It is easy to notice that, if f (g) enjoys the asymptotic behavior (52), then the function
(58) behaves as

β(g) � − ωC1g−ω (g → ∞). (59)

Therefore, the exponent ω is defined as

ω = − lim
g→∞

ln |β(g)|
ln g

. (60)

This procedure is to be accomplished in each approximation order. That is, for the
given fk(g), defined in Eq. (2), we write

βk(g) = d ln fk(g)

d ln g
(61)

and expand this in powers of g, getting

βk(g) = β0(g)

k∑

n=0

cngn, (62)
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with the coefficients c0 = 1 and cn = cn(a1, a2, . . . , ak) prescribed by the coefficients
an . Then, we construct the factor approximant

β∗
k (g) = β0(g)

Nk∏

i=1

(1 + Di g)mi (63)

for series (62). From here, considering the limit g → ∞, we get

ωk = − lim
g→∞

ln |β∗
k (g)|

ln g
, (64)

in analogy with Eq. (60).
Let, for example, the first factor in Eq. (63) behave as

β0(g) � Bgγ (g → ∞). (65)

Then approximant (63), at large g → ∞, is

βk(g) � Bgγ

Nk∏

i=1

(Di g)mi (g → ∞). (66)

As a result, Eq. (64) gives

ωk = −
⎛

⎝γ +
Nk∑

i=1

mi

⎞

⎠ . (67)

To summarize, the calculational scheme is as follows. For a given series (2), we
find the function (62) and construct its factor approximant (63), which provides us
with the exponent (67):

fk(g) → βk(g) → β∗
k (g) → ωk . (68)

Then, making the change of the variable

g = z

(1 − z)1/ωk
, (69)

from fk(g), we obtain expression (51). Constructing for the latter the factor approxi-
mant F∗

k (z), we come to the value F∗
k (1) approximating the sought limit f (∞):

Fk(z) → F∗
k (z) → F∗

k (1). (70)

When constructing the self-similar approximant F∗
k (z), we need to solve the system

of Eq. (9). Sometimes, though rare, it may happen that Eq. (9), for some k, have no
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solutions which would yield real self-similar factor approximants. In that case, for
F∗

k (z) we take the arithmetic average of its neighbors F∗
k = (F∗

k−1 + F∗
k+1)/2. In

practical calculations, one always deals with the approximation orders k = 1, 2, . . . , K
up to a finite maximal order K . Then the final answer for the set of F∗

k is given by
the average of two last terms (F∗

K + F∗
K−1)/2. The scheme, formulated in the present

Section, will be applied to studying the properties of fluctuating membranes in the
following Sections.

7 Energy of one-dimensional membrane

A cartoon of a membrane is a one-dimensional string oscillating between two rigid
walls. This model, to our knowledge, was suggested by Edwards [67] and later con-
sidered in many articles [2–6,68]. It has been shown that calculating the free energy
of the string is equivalent to finding the ground-state energy of a quantum particle in a
one-dimensional box. Replacing the rigid walls by a soft potential, characterized by a
finite stiffness g, and employing perturbation theory with respect to g yields the series

Ek(g) = π2

8g2

k∑

n=0

angn (71)

for the particle ground-state energy E(g), with the coefficients

a0 = 1, a1 = 1

4
, a2 = 1

32
, a3 = 1

512
,

a4 = 0, a5 = − 1

131072
, a6 = 0, a7 = 1

16777216
,

a8 = 0, a9 = − 5

8589934592
,

and so on.
The series (71) are obtained for the asymptotically small g → 0. But, in order to

pass to the case of hard walls, one has to consider the limit g → ∞, with E(∞) being
the sought value. Fortunately, the one-dimensional case allows for an explicit solution
[67–69] giving

E(g) = π2

8g2

⎛

⎝1 + g2

32
+ g

4

√

1 + g2

64

⎞

⎠ , (72)

from where

E(∞) = π2

128
= 0.077106. (73)

This makes it possible to evaluate the accuracy of the self-similar approximants E∗
k (∞)

with respect to the exact limit (73).
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We also wish to compare the accuracy of the two methods described above. First,
we use the direct method by imposing restriction (44). To this end, we construct the
factor approximants

E∗
k (g) = π2

8g2

Nk∏

i=1

(1 + Ai g)ni (74)

for series (71). Imposing the power restriction condition (44), we have

Nk∑

i=1

ni = 2. (75)

So that the sought limit is given by

E∗
k (∞) = π2

8

Nk∏

i=1

Ani
i , (76)

according to Eq. (45). The accuracy of approximants (76) is characterized by the
percentage errors

ε(E∗
k ) ≡ E∗

k (∞) − E(∞)

E(∞)
· 100% (77)

with respect to the exact value (73).
Another way is to follow the method of Sect. 6. Then we find the function (61),

with expansion (62), which reads as

βk(g) = −2
k∑

n=0

cngn, (78)

with the coefficients

c0 = 1, c1 = − 1

8
, c2 = 0, c3 = 1

1024
,

c4 = 0, c5 = − 3

262144
, c6 = 0, c7 = 5

33554432
,

c8 = 0, c9 = − 35

17179869184
,

etc.
Constructing the factor approximants (63) for series (78), we find

β∗
k (g) = 2g√

64 + g2
− 2 (79)
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for all k ≥ 4. Therefore, the exponent (34) is

ωk = 2 (k ≥ 4). (80)

Hence, transformation (69) becomes

g = z√
1 − z

. (81)

Using g = g(z), given by Eq. (81), we get

F(z) ≡ E(g(z)), (82)

similarly to Eq. (48). And the related series (81) acquire the form

Fk(z) = π2

8z2

k∑

n=0

bnzn, (83)

with the coefficients

b0 = 1, b1 = − 3

4
, b2 = − 3

32
, b3 = − 15

512
,

b4 = − 15

1024
, b5 = − 1185

131072
, b6 = − 1635

262144
,

b7 = − 77295

16777216
, b8 = − 119595

33554432
, b9 = − 24489285

8589934592
,

and so on.
Then, for series (83), we find the factor approximants

F∗
k (z) = π2

8z2

Nk∏

i=1

(1 + Bi z)
ni , (84)

whose values F∗
k (1) approximate the sought limit E(∞). The accuracy of F∗

k (1) is
characterized by the percentage errors

ε(F∗
k ) ≡ F∗

k (1) − E(∞)

E(∞)
· 100% (85)

The results of our calculations for the factor approximants E∗
k (∞) and F∗

k (1) are
presented in Table 1, together with their errors (77) and (85). As is seen, the method
of variable transformation of Sect. 6 is two orders more accurate than the method of
power restriction employing restriction (44). The final answer, given by the former
method, is E∗(∞) = 0.0771, deviating only by 0.01% from the exact value (73).
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Table 1 The factor
approximants E∗

k (∞) and
F∗

k (1), together with their
percentage errors,
approximating the ground-state
energy E(∞)

k E∗
k (∞) % F∗

k (1) %

3 0.1500 94.1 0.0593 −23.1

4 0.1370 78.1 0.0935 21.3

5 0.0526 −31.8 0.0926 20.0

6 0.0550 −28.7 0.0829 7.52

7 0.1030 33.4 0.0732 −5.01

8 0.0993 28.8 0.0805 4.36

9 0.0620 −19.6 0.0803 4.17

10 0.0636 −17.5 0.0783 1.49

11 0.0926 20.1 0.0762 −1.24

12 0.0906 17.5 0.0780 1.13

13 0.0662 −14.1 0.0779 1.08

14 0.0674 −12.6 0.0774 0.37

15 0.0882 14.4 0.0768 −0.34

E∗(∞) 0.0778 0.91 0.0771 −0.008

8 Pressure of fluctuating membrane

An important class of membranes is formed by those membranes whose constituent
molecules can freely move within them. Such membranes are called fluid. The thermal
fluctuations of these membranes, at a temperature T , are controlled by their bending
rigidity κ . When modeling these membranes, one usually considers them as having a
finite length L and an area A → ∞. In order to describe their properties, one, first,
assumes that a membrane is located between the walls of a finite stiffness g. This
allows one to resort to perturbation theory in powers of g. But to return to the case
of hard walls, one needs to consider the limit g → ∞, which requires to invoke a
resummation procedure.

It is convenient to introduce the dimensionless pressure p(g) of a fluctuating mem-
brane, connected with the dimensional pressure P(g) through the relation

p(g) ≡ κL3

8T 2 P(g). (86)

The asymptotic behavior of this function, at small g → 0, is represented by the series

pk(g) = π2

8g2

k∑

n=0

angn . (87)

The coefficients of the perturbation series (87) are known only up to the sixth order
[31], being

a0 = 1, a1 = 1
4 , a2 = 1

32 , a3 = 2.176347 × 10−3,
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a4 = 0.552721 × 10−4, a5 = −0.721482 × 10−5, a6 = −1.777848 × 10−6.

We may notice that, up to the second order, the coefficients an in pressure (87) are
the same as an in the ground-state energy (71). The pressure of the membrane, located
between hard walls, is given by the limit

p(∞) = lim
g→∞ p(g) .

We shall again find this limit by two methods, by the method of the power restriction
(44) and the method of the variable transformation of Sect. 6.

In the direct method of power restriction (44), we find the factor approximants
p∗

k (∞) corresponding to series (87). The approximants p∗
5 and p∗

6 cannot be defined
by this way. And other approximants are

p∗
1(∞) = 0.0193, p∗

2(∞) = 0.0232, p∗
3(∞) = 0.3120, p∗

4(∞) = 0.2880.

The most accurate Monte Carlo calculations for the membrane pressure have been
accomplished by Gompper and Kroll [33] giving

pMC = 0.0798 ± 0.0003. (88)

As we see, the accuracy of p∗
k (∞), compared to the Monte Carlo value (58), is rather

bad.
Now we pass to the more elaborated method of Sect. 6, based on the change of vari-

ables prescribed by Eq. (69). The correct choice of the exponent ωk is very important
for achieving a good accuracy of the sought limit F∗

k (1). This exponent is expressed
by Eq. (64) through the function (63), for which we take the even factor approximants
completely defined in Sect. 2. The series (62), for the considered case, has the same
form as in Eq. (78), but with the coefficients

c0 = 1, c1 = − 1
8 , c2 = 0, c3 = 0.64173 × 10−3,

c4 = 0.10668 × 10−5, c5 = 0.46253 × 10−5, c6 = 0.18454 × 10−5 .

Again, we may notice that the coefficients c0, c1, and c2 for the function βk(g), in the
case of the membrane, are the same as for series (78) in the case of the string. Construct-
ing the even-order factor approximants β∗

k (g) and substituting these into Eq. (64), we
find that the sole real exponent ωk is given by the fourth-order approximant. Thus, we
are left with the exponent

ωk = 1.927 (k ≥ 4). (89)

Accomplishing the change of variables (69), we find series (51), for which we construct
the factor approximants F∗

k (z). Taking the limit z → 1, we obtain

F∗
4 (1) = 0.0906, F∗

5 (1) = 0.0898, F∗
6 (1) = 0.0747.
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Averaging the last two values, we get our final result for the pressure (86) of the
fluctuating membrane:

p(∞) = 0.0823. (90)

This value is very close to the result [31] of Kastening p(∞) = 0.0821, though it is
3% higher than the Monte Carlo value (88) of Gompper and Kroll [33]. The achieved
accuracy is quite good, especially keeping in mind that the method of self-similar
factor approximants is much simpler than the numerical method used by Kastening
[31] and several orders simpler than the Monte Carlo simulations [33].

9 Conclusion

We have suggested several modifications for constructing self-similar approximants
in the frame of the self-similar approximation theory. Two main problems are con-
sidered, the problem of interpolation and extrapolation of asymptotic series. The sug-
gested methods are illustrated by examples typical of chemical physics and quantum
chemistry.

A special attention is payed to the problem of defining the value of a function
at infinity from its expansion at asymptotically small variables. We have designed a
new way for constructing the self-similar factor approximants, so that to derive an
accurate extrapolation f (∞) for a function f (g) in the limit of large g → ∞, when
only the asymptotic series fk(g) at small g → 0 are available. We have analyzed
and compared two variants of the extrapolation. One of them involves a restriction
on the powers of the constructed factor approximants, given by Eq.(44). This variant,
however, is not sufficiently accurate. The latter is caused by the fact that the self-
similar factor approximants are the most accurate when they are completely defined,
by the re-expansion procedure, through the coefficients of the asymptotic series (2).
But imposing additional constraints disturbs the self-consistency of the procedure and
worsens the accuracy.

The variant of Sect. 6, based on the variable transformation, is essentially more
accurate. This is because it does not involve a restriction on powers. Vice versa, it
takes into account the additional information on the behavior of the function f (g)

when approaching the limit f (∞). The prescribed change of the variable, not merely
tells that f (∞) is finite, but also describes how f (g) approaches this limit. The accu-
racy of the method is illustrated by calculating the pressure of fluctuating fluid strings
and membranes.

In order to concisely summarize the ideas of the most accurate method, let us briefly
delineate its main steps. Suppose we aim at finding the limit f (∞) of a function f (g),
as g → ∞. But what is known for us is only the approximate behavior of the function
at asymptotically small g → ∞, where it is approximated by the series fk(g), and
that f (g) → const , as g → ∞. For a given fk(g), we define the function βk(g)

through Eqs. (61) and (62). Then we construct the factor approximants β∗
k (g), as in

Eq. (63), and define the exponent ωk by Eq. (64). According to Eq. (69), we make the
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transformation

gk(z) = z

(1 − z)1/ωk
,

and, as in Eq. (50), introduce Fk(z) = fk(gk(z)). Constructing the factor approxi-
mants F∗

k (z) and taking the limit z → 1, we obtain the values F∗
k (1) approximating

the sought-function limit f (∞). Schematically, all this procedure is represented as
the sequence of the following steps:

fk(g) → βk(g) → β∗
k (g) → ωk → gk(z)

→ Fk(z) → F∗
k (z) → F∗

k (1) → f (∞) .

We have illustrated the above approach by calculating the pressure of fluid fluctu-
ating membranes. The latter form a rather widespread important class of membranes
studied in biology and chemistry [2–6,53,70]. The asymptotic series for the pressure
were derived from Helfrich model [5]. The developed methods can be applied to other
systems, where one needs to extrapolate the sought function from the region of asymp-
totically small variables to their finite values. Moreover, the suggested methods make
it even possible to find, with a good accuracy, the limit of the function at infinity. The
advantage of the developed methods is their simplicity and high accuracy.
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